Control of Breathing

Respiration functions through a complex network of neural controls and feedback mechanisms as the body constantly adjusts its breathing rate and tidal volume to meet respiratory metabolic demands.

Several diseases and conditions disrupt the neurological and muscular signals, compromising the body’s ability to breathe normally. Neurologic and muscular disorders like Duchenne muscular dystrophy, amyotrophic lateral sclerosis (ALS), Pompe disease, and sleep-related breathing disorders (SRBD) are key examples of neuromotor impairment that can lead to respiratory insufficiency.

Control of breathing requires complex interactions between the brain, nerves, muscles and lungs, which should be studied simultaneously to gain a deep understanding of breathing behavior.

Related Products


Conscious control, spontaneous breathing

Whole body plethysmography permits a continuous and non-invasive assessment of breathing patterns in conscious subjects. Measurements of respiratory rate, estimated tidal volume, minute ventilation and events like apneas and deep sighs provide valuable insights into the subject’s breathing drive and behavior.

Normoxic, hypoxic and hypercapnic stimuli can be applied to challenge the subject’s respiratory system, and study its response to varying levels of O2 and CO2. These environmental controls also permit the generation of hypoxia-related disease models such as pulmonary hypertension, sleep apnea, and SIDS.

In addition to breathing pattern information, plethysmography can be extended with high-fidelity EEG/EMG signals and blood oxygen sensors, which yield further insights into a subject’s ventilatory control.

References & Publications

Advanced lung function measurements

The flexiVent uses the forced oscillation technique (FOT) to probe the mechanical properties of the lungs with great detail and reproducibility in anesthetized subjects. Various pathologies and reflexes such as bronchoconstriction can dramatically alter lung mechanics (resistance, compliance, tissue mechanics). By silencing specific nerves and neurons, and performing advanced lung function measurements, scientists can isolate the contribution of various neurogenic components associated with respiratory response such as airway hyperreactivity.

References & Publications

Reliable physiological biopotential signals

easyTEL implantable telemetry acquires multiple biopotentials (EEG, EMG, ECG, EOG), blood pressure, temperature, and activity to study changes in sleep in relation to epilepsy, hypertension, circadian rhythms, and more in small to large animals.

While the small animal implants acquire up to 2 biopotentials for up to 150 days, the large animal implants can record up to 4 biopotentials for up to 125 days.

Request a Free Custom Literature Search

Save time evaluating emka TECHNOLOGIES equipment by having an Application Specialist conduct a custom literature research.

Researchers will receive an email report showing emka TECHNOLOGIES publications relevant to their specific application research area, along with custom equipment recommendations and commentary.

By browsing this website, you accept the use of cookies for statistical purposes.

Close Popup
Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.

These cookies are set through our site by our advertising partners.

Google Adwords
We use Adwords to track our Conversions through Google Clicks.

We use Hubspot to monitor our traffic and to help us AB test new features.

Google Tag Manager